

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Paper	Page
C1	1
C2	6
C3	11
C4	16
FP1	20
FP2	25
FP3	31

1.	<i>(a)</i>	(i)	Gradient of $BC = \frac{\text{increase in } y}{\text{increase in } y}$	M1
			$C = \frac{1}{2} \sum_{x \in \mathcal{X}} 1$	A 1
		<i>/</i> ···>	Gradient of $BC = -4$ (or equivalent)	
		(11)	A correct method for finding the equation of BC using	candidate's
			gradient for BC	MI
			Equation of <i>BC</i> : $y - (-5) = -4(x - 6)$ (or equivalent)	
			(f.t. candidate's gradient of BC)	A1
			Equation of <i>BC</i> : $4x + y - 19 = 0$ (convincing)	A1
		(iii)	Use of $m_{AD} \times m_{BC} = -1$	M1
		. ,	A correct method for finding the equation of AD using	candidate's
			gradient for AD	(M1)
			(to be awarded only if corresponding M1 is not award	led in part
			(ii))	icu ili pure
			Fountion of AD : $y = 4 - \frac{1}{4}(x - 8)$ (or equive	alent)
			(if t_{1} candidate's gradient of BC	$\gamma \Delta 1$
		Noto	Total mark for part (a) is 7 marks	<i>)</i> AI
		note.	1 otal mark for part(a) is 7 marks	
	(b)	Δn atte	empt to solve equations of <i>BC</i> and <i>AD</i> simultaneously	M1
	(0)	r - A	y = 3 (convincing) (convincing)	$(a a) \Delta 1$
		$\lambda = \tau, j$	y = 5 (convincing) (c	
	(c)	A corre	ect method for finding the length of <i>BD</i>	M1
	(0)	RD = 1		A 1
		DD = V	108	AI
	(d)	A corr	ect method for finding F	M1
	(u)	F(0, 2))	Δ1
		L(0, 2)	1	AI
2.	(a)	2 + 5	$7 = (2 + 5\sqrt{7})(4 - \sqrt{7})$	M1
	(4)	$\frac{2+3}{4+\sqrt{7}}$	$\frac{1}{7} \frac{(2+3)(7)(1-3)}{(4+\sqrt{7})(4-\sqrt{7})}$	
		H T V/	$\frac{1}{1} = \frac{1}{1} $	A 1
		Denem	$\frac{16}{100} = \frac{7}{100} = \frac{16}{7} = \frac{7}{100} = \frac{7}{100} = \frac{16}{100} = \frac{16}{1$	
			10 - 7	AI
		$\frac{2+5\gamma}{1-1}$	$\frac{1}{2} = -3 + 2NI \tag{6}$	2.a.o.) AI
		4 + √7	!	
		Specia	ll case	
		If M1 1	not gained, allow B1 for correctly simplified numerator or de	enominator

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $4 + \sqrt{7}$

(b)
$$\sqrt{360} = 6\sqrt{10}$$
 B1
 $\sqrt{2} \times (\sqrt{5})^3 = 5\sqrt{10}$ B1

$$\frac{\sqrt{30} \times \sqrt{8}}{\sqrt{6}} = 2\sqrt{10}$$
B1

$$\sqrt[4]{360} - \sqrt{2} \times (\sqrt{5})^3 - \frac{\sqrt{30} \times \sqrt{8}}{\sqrt{6}} = -\sqrt{10}$$
 (c.a.o.) B1

3.	(<i>a</i>)	$\frac{dy}{dx} = 4x - 10$ dx An attempt to substitute Value of $\frac{dy}{dx}$ at $P = 2$ Use of gradient of norm	(an attempt to differentiate, at least one non-zero term correct) e $x = 3$ in candidate's expression for $\frac{dy}{dx}$ (c.a.o.) nal = -1	M1 m1) A1 m1
		Equation of normal at <i>H</i> (f.t. candidate's value for	candidate's value for $\frac{dy}{dx}$ 2: $y - (-5) = -\frac{1}{2}(x - 3)$ (or equival or $\frac{dy}{dx}$ provided M1 and both m1's awarded) $\frac{dy}{dx}$	ent) A1
	(b)	An attempt to put candi x-coordinate of $Q = 2.5$ (f.t. one	date's expression for $\frac{dy}{dx} = 0$ dx e error in candidate's expression for $\frac{dy}{dx}$	M1 A1
4.	(<i>a</i>)	$2(x-4)^2 - 40$	B	1 B1 B1
	(<i>b</i>)	least value = -20 <i>x</i> -coordinate = 4	(f.t. candidate's value for <i>c</i>) (f.t. candidate's value for <i>b</i>)	B1 B1

5. (a) $(1+2x)^7 = 1 + 14x + 84x^2 \dots$ B1	B1 B1
--	-------

(<i>b</i>)	$(1-4x)(1+2x)^7 = 1 - 4x + 14x - 56x^2 + 84x^2$	
	Constant term and terms in x	B1
	Terms in x^2	B1
	(f.t. candidate's expression in (a))	
	$(1-4x)(1+2x)^7 = 1+10x + 28x^2$ (c.a.o.)) B1

<i>(a)</i>	(i)	An expression for $b^2 - 4ac$, with at least two of a, b, c correct	
			M1
		$b^{2} - 4ac = (4k + 1)^{2} - 4 \times (k + 1) \times (k - 5)$	A1
		Putting $b^2 - 4ac = 0$	m1
		$4k^2 + 8k + 7 = 0 \qquad (convincing)$	A1
(ii)	An e	xpression for $b^2 - 4ac$, with at least two of a, b, c correct	
			(M1)
		(to be awarded only if corresponding M1 is not awar	ded in
		part (i))	
		$b^2 - 4ac = 64 - 112 \ (= -48)$	A1
		$b^2 - 4ac < 0 \Rightarrow$ no real roots	A1

Note: Total mark for part (*a*) is 6 marks

<i>(b)</i>	Finding critical values $x = -\frac{3}{4}$, $x = 3$	B1
	A statement (mathematical or otherwise) to the effect that	
	$x \le -\frac{3}{4}$ or $3 \le x$ (or equivalent)	
	(f.t. candidate's derived critical values)	B2
	Deduct 1 mark for each of the following errors	
	the use of strict inequalities	
	the use of the word 'and' instead of the word 'or'	

7.	<i>(a)</i>	$y + \delta y = 5(x + \delta x)^2 + 8(x + \delta x) - 11$	B1
		Subtracting y from above to find δy	M1
		$\delta y = 10x\delta x + 5(\delta x)^2 + 8\delta x$	A1
		Dividing by δx and letting $\delta x \rightarrow 0$	M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 10x + 8$	(c.a.o.) A1

(b) $\underline{dy} = 6 \times \underline{2} \times x^{-1/3} + 5 \times -2 \times x^{-3}$ (completely correct answer) B2 (If B2 not awarded, award B1 for at least one correct non-zero term)

8.	Attempting to find $f(r) = 0$ for some value of r		
	$f(-1) = 0 \implies x + 1$ is a factor	A1	
	$f(x) = (x + 1)(8x^2 + ax + b)$ with one of a, b correct		
	$f(x) = (x+1)(8x^2 - 10x + 3)$	A1	
	$f(x) = (x + 1)(2x - 1)(4x - 3)$ (f.t. only $8x^2 + 10x + 3$ in above line)	A1	
	$x = -1, \frac{1}{2}, \frac{3}{4}$ (f.t. for factors $2x \pm 1, 4x \pm 3$)	A1	

© WJEC CBAC Ltd.

9. (*a*)

Concave down curve with <i>y</i> -coordinate of maximum = 4	B1
<i>x</i> -coordinate of maximum $= -3$	B1
Both points of intersection with <i>x</i> -axis	B1

(b)

Concave down curve with <i>y</i> -coordinate of maximum = 4	B1
<i>x</i> -coordinate of maximum $= -1$	B1
Both points of intersection with x-axis	B1

Note: A candidate who draws a curve with no changes to the original graph is awarded 0 marks (both parts)

$$(2x \times x) + (2x \times x) + (2x \times y) + (2x \times y) + (x \times y) + (x \times y) = 108$$
 M1

$$6xy + 4x^2 = 108 \Rightarrow xy = 18 - \underline{2}x^2$$
 (convincing) A1

(ii)
$$V = 2x \times x \times y = 2x(xy) \Rightarrow V = 36x - \frac{4}{3}x^3$$
 (convincing) B1

(b)
$$\frac{\mathrm{d}V}{\mathrm{d}x} = 36 - 3 \times \frac{4}{3}x^2$$
B1

Putting derived $\frac{dV}{dx} = 0$ M1

$$x = 3, (-3)$$
 (f.t. candidate's $\frac{dV}{dx}$ A1

Stationary value of *V* at x = 3 is 72 (c.a.o) A1 A correct method for finding nature of the stationary point yielding a maximum value (for 0 < x) B1

C2

1.

2.

0 0.50.50.470588235 0.333333333 1 1.50.186046511 2 0.1(5 values correct) **B**2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with h = 0.5M1 $I \approx 0.5 \times \{0.5 + 0.1 + 2(0.470588235 + 0.333333333 + 0.186046511)\}$ 2 $I \approx 2.579936152 \times 0.5 \div 2$ $I \approx 0.644984038$ $I \approx 0.645$ (f.t. one slip) A1 **Special case** for candidates who put h = 0.40 0.50.40.484496124 0.80.3980891721.20.2682403430.164041994 1.62 0.1(all values correct) B1 Correct formula with h = 0.4**M**1 $I \approx 0.4 \times \{0.5 + 0.1 + 2(0.484496124 + 0.398089172 +$ 2 0.268240343 0.164041994)+ $I \approx 3.229735266 \times 0.4 \div 2$ $I \approx 0.645947053$ $I \approx 0.646$ (f.t. one slip) A1 Note: Answer only with no working earns 0 marks *(a)* (i) Correct use of $\tan \theta = \underline{\sin \theta}$ **M**1 (o.e.) $\cos \theta$ Correct use of $\cos^2\theta = 1 - \sin^2\theta$ M1 $6(1 - \sin^2\theta) + 5\sin\theta = 0 \Longrightarrow 6\sin^2\theta - 5\sin\theta - 6 = 0$ (convincing) A1 (ii) An attempt to solve given quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form (a sin $(\theta + b)(c\sin\theta + d)$, with $a \times c = 6$ and $b \times d = -6$ M1 $6\sin^2\theta - 5\sin\theta - 6 = 0 \implies (3\sin\theta + 2)(2\sin\theta - 3) = 0$ $(\sin\theta = \frac{3}{2})$ $\Rightarrow \sin \theta = -\underline{2},$ (c.a.o.) A1 3 $\theta = 221.81^{\circ}, 318.19^{\circ}$ B1 B1 Note: Subtract (from final two marks) 1 mark for each additional root in range from $3\sin\theta + 2 = 0$, ignore roots outside range. $\sin \theta = -$, f.t. for 2 marks, $\sin \theta = +$, f.t. for 1 mark $2x - 60^\circ = -38^\circ, 38^\circ, 322^\circ$ **B**1 *(b)* (one value) $x = 11^{\circ}, 49^{\circ}$ B1 B1 Note: Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range.

(a)

Either:
$$(x + 2)^2 = x^2 + (x - 2)^2 - 2 \times x \times (x - 2) \times \cos B\hat{A}C$$

Or: $\cos B\hat{A}C = \frac{x^2 + (x - 2)^2 - (x + 2)^2}{2 \times x \times (x - 2)}$

(substituting the correct expressions in the correct places in the cos rule) M1 Either: $\cos B\hat{A}C = \frac{x^2 + x^2 - 4x + 4 - x^2 - 4x - 4}{2 \times x \times (x - 2)}$ (o.e.) Or: $\cos B\hat{A}C = x^2 + x^2 - 4x + 4 - x^2 - 4x - 4$ (o.e.) A1

Or:
$$\cos B\hat{A}C = \frac{x^2 + x^2 - 4x + 4 - x^2 - 4x - 4}{2x^2 - 4x}$$
 (o.e.) A1
 $\cos B\hat{A}C = \frac{x - 8}{2x^2 - 4x}$ (convincing) A1

$$B\hat{A}C = \frac{x-8}{2x-4}$$
 (convincing) A1

(b) (i)
$$\frac{x-8}{2x-4} = -\frac{1}{2}$$
 M1

$$x = 5$$
 A1 Either:

(ii) Either:

$$\frac{\sin ABC}{3} = \frac{\sin 120^{\circ}}{7}$$

Or:

(substituting the correct values in the correct places in the sin rule, f.t. candidate's value for x, provided x > 2) M1 $ABC = 21.8^{\circ}$

(f.t. candidate's value for x, provided
$$x > 2$$
) A1

 $3^2 = 5^2 + 7^2 - 2 \times 5 \times 7 \times \cos ABC$ (substituting the correct values in the correct places in the cos rule, f.t. candidate's value for *x*, provided x > 2) M1 $ABC = 21 \cdot 8^\circ$

(f.t. candidate's value for x, provided x > 2) A1

4. (a)
$$S_n = a + [a + d] + \ldots + [a + (n - 1)d]$$
(at least 3 terms, one at each end) B1

$$S_n = [a + (n - 1)d] + [a + (n - 2)d] + \ldots + a$$
Either:

$$2S_n = [a + a + (n - 1)d] + [a + a + (n - 1)d] + \ldots + [a + a + (n - 1)d]$$
(at least three terms, including those derived from the first pair and the last pair plus one other pair of terms)
Or:

$$2S_n = [a + a + (n - 1)d] + \ldots \qquad (n \text{ times})$$
M1

$$2S_n = n[2a + (n - 1)d]$$

$$S_n = n[2a + (n - 1)d]$$
(convincing) A1

(*b*) **Either:**

$$10(2a+9d) = 115$$
 B1

$$\frac{1}{2}$$

S. $-115 + 130$ M1

$$\frac{14}{2}(2a+13d) = 245$$
 A1

An attempt to solve the candidate's equations simultaneously by eliminating one unknown M1

$$a = -2, d = 3$$
 (both values) (c.a.o.) A1

$$\frac{10}{2}(2a+9d) = 115$$
B1

 $\begin{aligned} (a + 10d) + (a + 11d) + (a + 12d) + (a + 13d) &= 130 \\ 4a + 46d &= 130 \\ An \text{ attempt to solve the candidate's equations simultaneously by eliminating one unknown} \\ M1 \\ a &= -2, d &= 3 \text{ (both values)} \\ \end{aligned}$

5. (a)
$$r = 0.8$$
 B1
 $S_{18} = \frac{100(1 - 0.8^{18})}{1 - 0.8}$ M1

$$S_{18} \approx 490.992 = 491$$
 (c.a.o.) A1

(b) (i)
$$ar = -20$$
 B1
 $a = -64$ B1

$$\frac{a}{1-r} = 64$$
 B1

An attempt to solve these equations simultaneously by eliminating a M1

(ii)
$$16r^2 - 16r - 5 = 0$$
 (convincing) A1
(iii) $r = -\frac{1}{4}$ (c.a.o.) B1
 $|r| < 1$ E1

6. (a)
$$\frac{x^{5/4}}{5/4} + 2 \times \frac{x^{-4}}{-4} + c$$
 (-1 if no constant present) B1,B1

(b) (i)
$$x^2 + 3 = 4x$$
 M1
An attempt to rewrite and solve quadratic equation
in *x*, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b = 3$ m1
 $(x - 1)(x - 3) = 0 \Rightarrow x = 1, x = 3$ (both values, c.a.o) A1
Note: Answer only with no working earns 0 marks

(ii) Area of small triangle = 2
(any method, f.t. candidate's value for
$$x_A$$
) B1
Use of integration to find the area under the curve M1
 $\int x^2 dx = (1/3)x^3$, $\int 3 dx = 3x$ (correct integration) B1

Correct method of substitution of candidate's limits

$$\left[(1/3)x^3 + 3x \right]_1^3 = (9+9) - (1/3+3) = 44/3$$

Use of candidate's values for x_A and x_B as limits and trying to find total area by adding area under curve to area of triangle

m1

m1

Shaded area =
$$44/3 + 2 = 50/3$$
 (c.a.o.) A1

(a) Let
$$p = \log_{a}x$$
, $q = \log_{a}y$
Then $x = a^{p}$, $y = a^{q}$ (the relationship between log and power) B1
 $xy = d^{p} \times d^{q} = a^{p+q}$ (the relationship between log and power)
 $\log_{a}xy = p + q$ (the relationship between log and power)
 $\log_{a}xy = p + q = \log_{a}x + \log_{a}y$ (convincing) B1
(b) **Either:**
 $(2 - 3x) \log_{10} 5 = \log_{10} 8$ (taking logs on both sides and using the power law) M1
 $x = 2 \log_{10} 5 - \log_{10} 8$ A1
 $x = 0.236$ (f.t. one slip, see below) A1
Or:
 $2 - 3x = \log_{5} 8$ (rewriting as a log equation) M1
 $x = 2 - \log_{5} 8$ (rewriting as a log equation) M1
 $x = 2 - \log_{5} 8$ A1
 $x = 0.236$ (f.t. one slip, see below) A1
Note: an answer of $x = -0.236$ from $x = \frac{\log_{10} 8 - 2 \log_{10} 5}{3 \log_{10} 5}$
earns M1 A0 A1
an answer of $x = 1.097$ from $x = 2 \log_{10} 5 + \log_{10} 8$
 $3 \log_{10} 5$
earns M1 A0 A1
an answer of $x = 0.708$ from $x = 2 \log_{10} 5 - \log_{10} 8$
 $\log_{10} 5$
earns M1 A0 A1

Note: Answer only with no working shown earns 0 marks

(<i>c</i>)	$\frac{1}{2}\log_a 144x^8 = \log_a 12x^4$	(pc	ower law)	B1
	$\log_a 90x^2 - \log_a \left(\frac{5}{1}\right) = \log_a \left(\frac{90x^2}{1}\right)$	$\frac{2^{2} \times x}{5}$ (subtraction	n law)	B1
	$\frac{90x^2 \times x}{5} = 12x^4 \qquad (removed)$	5 J oving logs, f.t one incorrect	t term)	B1
	x = 1.5		(c.a.o.)	B 1

8.	<i>(a)</i>	A(-1, 3) A correct method for finding the radius Radius = 5	B1 M1 A1					
	<i>(b)</i>	(i) Showing that the coordinates of <i>A</i> do not satisfy the equation						
		of <i>L</i> (f.t. candidate's coordinates for <i>A</i>)	B1					
		(ii) An attempt to substitute $(9 - x)$ for y in the equation of C_1	M1					
		$x^{2} - 5x + 6 = 0$ (or $2x^{2} - 10x + 12 = 0$)	A1					
		x = 2, x = 3						
		(correctly solving candidate's quadratic, both values)	A1					
		Points of intersection are $(2, 7), (3, 6)$ (c.a.o.)	A1					
	(\mathcal{C})	Distance between centres of C_1 and $C_2 = 15$ (ft and ideta's accordinates for A)	D 1					
		(I.I. Calculate S coolumnates for A)	DI					
		- distance between centres sum of the radii	М1					
		Shortest distance between the circles -2	1011					
		(ft candidate's coordinates for A and radius for C.)	Δ1					
		(i.i. candidate 3 coordinates for 71 and fadius for C1.)	111					
0	(a)	Substitution of values in area formula for triangle	М1					
).	(u)	Area $-\frac{1}{2} \times 7.2^2 \times \sin 1.1 - 23.1 \text{ cm}^2$						
		$Aica = 72 \times 7.2 \times \sin 1.1 = 25.1 \mathrm{cm}$.	ЛІ					
	<i>(b)</i>	Let $B\hat{O}C = \phi$ radians						
		$\frac{1}{2} \times 7 \cdot 2^2 \times \phi = 19 \cdot 44$	M1					
		d = 0.75 (0.e.)	Δ1					

$$\varphi = 0.75$$
 (0.e.) All
Length of arc $BC = 7.2 \times 0.75 = 5.4$ cm

(f.t. candidate's value for ϕ) A1

C3

1.

2.

(a)

Correct formula with h = 0.5 M1 $I \approx 0.5 \times \{1.945910149 + 3.496507561$ $3 + 4(2.238046572 + 3.073850053) + 2(2.63905733)\}$ $I \approx 31.96811887 \times 0.5 \div 3$ $I \approx 5.328019812$ $I \approx 5.328$ (f.t. one slip) A1

Note: Answer only with no working earns 0 marks

(b)
$$\int_{1}^{3} \ln \sqrt{x^{3}+6} \, dx \approx 2.664 \qquad (f.t. \text{ candidate's answer to } (a)) \qquad B1$$

 $4(\csc^2\theta - 1) - 8 = 2\csc^2\theta - 5\csc\theta$ (a)(correct use of $\cot^2 \theta = \csc^2 \theta - 1$) **M**1 An attempt to collect terms, form and solve quadratic equation in cosec θ , either by using the quadratic formula or by getting the expression into the form $(a \operatorname{cosec} \theta + b)(c \operatorname{cosec} \theta + d)$, with $a \times c = \text{coefficient of } \csc^2 \theta$ and $b \times d = \text{candidate's constant}$ m1 $2 \operatorname{cosec}^2 \theta + 5 \operatorname{cosec} \theta - 12 = 0 \Longrightarrow (2 \operatorname{cosec} \theta - 3)(\operatorname{cosec} \theta + 4) = 0$ \Rightarrow cosec $\theta = \underline{3}$, cosec $\theta = -4$ 2 $\Rightarrow \sin \theta = \frac{2}{3}, \sin \theta = -\frac{1}{4}$ (c.a.o.) A1 $\theta = 41.81^{\circ}, 138.19^{\circ}$ B1 $\theta = 194.48^{\circ}, 345.52^{\circ}$ B1 B1 Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\sin \theta = +, -, \text{ f.t. for 3 marks},$ $\sin \theta = -, -, \text{ f.t. for 2 marks}$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$ Correct use of sec $\phi = \underline{1}$ and $\tan \phi = \underline{\sin \phi}$ $\cos \phi$ $\cos \phi$ *(b)* (o.e.) M1

$$\sin\phi = -\frac{1}{2}$$
 A1

$$\phi = 210^\circ, 330^\circ$$
 (f.t. for $\sin \phi = -a$) A1

Use of product formula yielding $x^3 \times 2y \times \frac{dy}{dx} + 3x^2 \times y^2$ *(a)* B1 B1 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3x^2y^2}{2x^3y}$ (c.a.o.) **B**1 *(b)* (i) Putting candidate's expression for dy = 3 and an attempt to dx simplify M1 $-\frac{3a^2b^2}{2a^3b} = 3 \Longrightarrow b = -2a$ (convincing) A1 Substituting a for x and -2a for y in the equation for C (ii) M1 a = 2, b = -4A1 Differentiating $\ln t$ and $5t^4$ with respect to *t*, at least one correct *(a)* **M**1 candidate's *x*-derivative = 1, t candidate's y-derivative = $20t^3$ (both values) A1 dy = candidate's y-derivativeM1 dx = candidate's *x*-derivative $dy = 20t^4$ (c.a.o.) A1 dx $\underline{d}(\underline{dy}) = 80t^3$ *(b)* (f.t. candidate's expression for dy) **B**1 dt dxdxUse of $\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div$ candidate's *x*-derivative M1 $\underline{d^2 y} = 80t^4$ (f.t. one slip) A1

$$\frac{dx^2}{dt^2 y} = 0.648 \Longrightarrow t = 0.3$$
 (c.a.o.) A1

5. (a)
$$\frac{dy}{dx} = 5 \times (7 - 9x^2)^4 \times f(x), \qquad (f(x) \neq 1)$$
 M1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -90x \times (7 - 9x^2)^4$$
 A1

(b)
$$\frac{dy}{dx} = \frac{6}{1 + (6x)^2}$$
 or $\frac{1}{1 + (6x)^2}$ or $\frac{6}{1 + 6x^2}$ M1
 $dy = 6$ A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{1+36x^2}$$
 A1

(c)
$$\frac{dy}{dx} = e^{4x} \times m \sec^2 2x + \tan 2x \times ke^{4x} \qquad (m = 1, 2, k = 1, 4) \qquad M1$$

$$\frac{dy}{dx} = e^{4x} \times 2 \sec^2 2x + \tan 2x \times 4e^{4x} \qquad (at least one correct term) \qquad B1$$

$$\frac{dy}{dx} = e^{4x} \times 2 \sec^2 2x + \tan 2x \times 4e^{4x} \qquad (c.a.o.) \qquad A1$$

© WJEC CBAC Ltd.

3.

(d)
$$\frac{dy}{dx} = \frac{(2 + \cos x) \times m \cos x - (3 + \sin x) \times k \sin x}{(2 + \cos x)^2} \quad (m = 1, -1, k = 1, -1) \quad M1$$

$$\frac{dy}{dx} = \frac{(2 + \cos x) \times (\cos x) - (3 + \sin x) \times (-\sin x)}{(2 + \cos x)^2}$$
A1

$$\frac{dy}{dx} = \frac{2\cos x + 3\sin x + 1}{(2 + \cos x)^2}$$
A1

6. (*a*) (i

(i)
$$\int \cos(3x + \pi/2) \, dx = k \times \sin(3x + \pi/2) + c$$

(k = 1, 3, ¹/₃, - ¹/₃) M1
(cos (3r + \pi/2) dr = ¹/₂ × sin (3r + \pi/2) + c A1

$$\int \cos(3x + \pi/2) \, dx = \frac{1}{3} \times \sin(3x + \pi/2) + c \qquad AI$$

(ii)
$$\int_{0}^{1} e^{3-4x} dx = k \times e^{3-4x} + c \qquad (k = 1, -4, \frac{1}{4}, -\frac{1}{4}) \qquad M1$$
$$\int_{0}^{1} e^{3-4x} dx = -\frac{1}{4} \times e^{3-4x} + c \qquad A1$$

(iii)
$$\int \frac{7}{8x+5} dx = 7 \times k \times \ln |8x+5| + c \quad (k = 1, 8, \frac{1}{8})$$
 M1

$$\int \frac{7}{8x+5} dx = 7 \times \frac{1}{8} \times \ln |8x+5| + c$$
 A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (2x-1)^{-4} dx = k \times (2x-1)^{-3} = (k=1, 2, 1/2)$$
 M1

$$\int_{1}^{2} 9 \times (2x-1)^{-4} dx = \left[9 \times \frac{1}{2} \times \frac{(2x-1)^{-3}}{-3} \right]_{1}^{2}$$
A1

Correct method for substitution of limits in an expression of the form $m \times (2x-1)^{-3}$ M1

$$\int_{1}^{2} 9 \times (2x-1)^{-4} dx = \frac{13}{9} = 1.44$$
 (f.t. for $k = 1, 2$ only) A1

Note: Answer only with no working earns 0 marks

7.	(<i>a</i>)	tisfied	M1 A1	
	(b)	Trying to solve either $x^2 - 10 \le 6$ or $x^2 - 10 \ge 7$	≥-6	M1
		$x^{2} - 10 \ge 0 \implies x^{2} \ge 10$ $x^{2} - 10 \ge -6 \implies x^{2} \ge 4$	(both inequalities)	A1
		At least one of: $2 \le x \le 4, -4 \le x \le -2$	(f.t. one slip)	A1
		Required range: $2 \le x \le 4$ or $-4 \le x \le -2$	(c.a.o.)	A1
		Alternative mark scheme		
		$(x^2 - 10)^2 \le 36$ (forming and trying to	solve quadratic in x^2)	M1
		Critical values $x^2 = 4$ and $x^2 = 16$	•	A1
		At least one of $2 < u < 4$ $4 < u < 2$	$(\mathbf{f} + \mathbf{a} + \mathbf{a} + \mathbf{a} + \mathbf{a})$	A 1

At least one of:
$$2 \le x \le 4, -4 \le x \le -2$$
(f.t. one slip)A1Required range: $2 \le x \le 4$ or $-4 \le x \le -2$ (c.a.o.)A1

8.
$$x_0 = -1.5$$

$x_1 = -1.6666394263 $	$(x_1 \text{ correct, at least 5 places after the point})$	B1
$x_2 = -1.676625462$		
$x_3 = -1.677198866$		
$x_4 = -1.677230823 = -1.677$	$(x_4 \text{ correct to 5 decimal places})$	B1
$\operatorname{Let} f(x) = x^2 + \mathrm{e}^x - 3$		
An attempt to check values or	signs of $f(x)$ at $x = -1.677225$, $x = -1.677235$	
		M1

$$f(-1.677225) = -2.44 \times 10^{-5} < 0, f(-1.677235) = 7.26 \times 10^{-6} > 0$$
 A1

Change of sign
$$\Rightarrow \alpha = -1.67723$$
 correct to five decimal places A1

Concave down curve and y-coordinate of maximum $= 4$	B1
x-coordinate of maximum $= -1$	B1
Both points of intersection with x-axis	B1

10.	<i>(a)</i>	$y - 6 = e^{5 - x/2}$.		B1
		An attempt to express equation as a logarithmic equation and to		
		isolate x		M1
		$x = 2 [5 - \ln (y - 6)] $ (c.a.o.)		A1
		$f^{-1}(x) = 2 [5 - \ln (x - 6)]$ (f.t. one slip in candidate's expression for x)		A1
	(<i>b</i>)	$D(f^{-1}) = [7, \infty)$	B1	B 1

11. (a) (i) $D(fg) = (0, \pi/4]$ B1 (ii) $R(fg) = (-\infty, 0]$ B1 B1

(b) (i)
$$fg(x) = -0.4 \Rightarrow \tan x = e^{-0.4}$$
 M1
 $x = 0.59$ A1

(ii) Equation has solution only if
$$k \in R(fg)$$
.
 \therefore choose any $k \notin R(fg)$ (f.t. candidate's $R(fg)$) B1

C4

(a) $f(x) \equiv \frac{A}{x^2} + \frac{B}{x} + \frac{C}{(x+2)}$ (correct form) $6 + x - 9x^2 \equiv A(x+2) + Bx(x+2) + Cx^2$ (correct clearing of fractions and genuine attempt to find coefficients) m1 A = 3, C = -8, B = -1(all three coefficients correct) A2 If A2 not awarded, award A1 for at least one correct coefficient $f'(x) = \frac{-6}{x^3} + \frac{1}{x^2} + \frac{8}{(x+2)^2}$ (i) (o.e.) (f.t. candidate's values for A, B, C) (first term) (at least one of last two terms) (ii) $f'(2) = 0 \Longrightarrow$ stationary value when x = 2(c.a.o.) B1

2. $3x^2 - 2x \times 2y \frac{\mathrm{d}y}{\mathrm{d}x} - 2y^2 + 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ $\begin{bmatrix} -2x \times 2y \, \underline{dy} - 2y^2 \\ dx \end{bmatrix} \begin{bmatrix} 3x^2, 3y^2 \, \underline{dy} \end{bmatrix}$ **B**1

$$3x^2, 3y^2 \frac{dy}{dx}$$
 B1

Either
$$\frac{dy}{dx} = \frac{2y^2 - 3x^2}{3y^2 - 4xy}$$
 or $\frac{dy}{dx} = 2$ (o.e.) (c.a.o.) B1

Use of
$$\operatorname{grad}_{normal} \times \operatorname{grad}_{tangent} = -1$$
 M1
Equation of normal: $y - 1 = -\underline{1}(x - 2)$ [f.t. candidate's value for \underline{dy}] A1
 2

3.

(a)

1.

(b)

 $8(2\cos^2\theta - 1) + 6 = \cos^2\theta + \cos\theta$

(correct use of $\cos 2\theta = 2\cos^2\theta - 1$) **M**1 An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta + b)(c \cos \theta + d)$, with $a \times c$ = candidate's coefficient of $\cos^2 \theta$ and $b \times d$ = candidate's constant m1 $15\cos^2\theta - \cos\theta - 2 = 0 \Longrightarrow (5\cos\theta - 2)(3\cos\theta + 1) = 0$

$$\Rightarrow \cos \theta = \frac{2}{5}, \quad \cos \theta = -\frac{1}{3}, \quad (c.a.o.) \quad A1$$

$$\theta = 66.42^{\circ}, 293.58^{\circ}$$
 B1
 $\theta = 109.47^{\circ}, 250.53^{\circ}$ B1 B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

$$\cos \theta = +, -, \text{ f.t. for 3 marks}, \quad \cos \theta = -, -, \text{ f.t. for 2 marks}$$

 $\cos \theta = +, +, \text{ f.t. for 1 mark}$

M1

B1

B1

(b) R = 4 B1 Correctly expanding $\cos (\theta + \alpha)$, correctly comparing coefficients and using either $4 \cos \alpha = \sqrt{15}$ or $4 \sin \alpha = 1$ or $\tan \alpha = \frac{1}{\sqrt{15}}$ to find α (f.t. candidate's value for R) M1 $\alpha = 14.48^{\circ}$ (c.a.o.) A1 $\cos (\theta + 14.48^{\circ}) = 3 = 0.75$ 4

(f.t. candidate's values for R, α , $0^{\circ} < \alpha < 90^{\circ}$)B1 $\theta + 14 \cdot 48^{\circ} = 41 \cdot 41^{\circ}$, $318 \cdot 59^{\circ}$ (at least one value, f.t. candidate's values for R, α , $0^{\circ} < \alpha < 90^{\circ}$)B1 $\theta = 26 \cdot 93^{\circ}$, $304 \cdot 11^{\circ}$ (c.a.o.)B1

Volume =
$$\pi \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin^2 2x \, dx$$
 B1

$$\sin^2 2x = \frac{(1 - \cos 4x)}{2}$$
B1

$$\int (a + b\cos 4x) \, dx = ax + \frac{1}{4} b\sin 4x, \qquad a \neq 0, \ b \neq 0 \qquad B1$$

Correct substitution of candidate's limits in candidate's integrated expression of form $mx + n \sin 4x$ $m \neq 0, n \neq 0$ M1 Volume = 1.985 (c.a.o.) A1

Note: Answer only with no working earns 0 marks

5. (a) (i)
$$(1+6x)^{1/3} = 1 + 2x - 4x^2$$
 (1 + 2x) B1
(-4x²) B1

(ii)
$$|x| < \frac{1}{6} \text{ or } -\frac{1}{6} < x < \frac{1}{6}$$
 B1

(b)
$$2 + 4x - 8x^2 = 2x^2 - 15x \Rightarrow 10x^2 - 19x - 2 = 0$$
 M1
(An attempt to set up and use a correct method to solve quadratic using candidate's expansion for $(1 + 6x)^{1/3}$)
 $x = -0.1$ (f.t. only candidate's range for x in (a)) A1

© WJEC CBAC Ltd.

(a) candidate's x-derivative = a
candidate's y-derivative =
$$-\frac{b}{t^2}$$
 (at least one term correct) B1
 $\frac{dy}{dx} = \frac{candidate's y-derivative}{dx}$ (at least one term correct) B1
 $\frac{dy}{dx} = \frac{candidate's y-derivative}{dx}$ (c.a.o.) A1
Tangent at P: $y - \frac{b}{p} = -\frac{b}{ap^2}$ (c.a.o.) A1
 $\frac{ap^2y - abp}{ap^2} = -bx + abp$ (o.e.)
 $\frac{ap^2y - abp}{ap^2y} = bx + abp$ (convincing) A1
(b) $y = 0 \Rightarrow x = 2ap$ (o.e.) B1
Area of triangle $AOB = 2ab$ (c.a.o.) B1
(c) $p^2 - 2p + 2 = 0$ ($abp^2 - 2abp + 2ab = 0$) B1
Attempting **either** to use the formula to solve the candidate's quadratic
in p or to find the discriminant of the candidate's quadratic
in p or to find the discriminant of the candidate's quadratic
or $(p-1)^2 + 1 = 0 \Rightarrow (p-1)^2 = -1)$ on such P can exist
or $(p-1)^2 + 1 = 0 \Rightarrow (2p + 1) \Rightarrow no such P can exist$
(c.a.o.) A1
(a) $u = 3x - 1 \Rightarrow du = 3dx$ (o.e.) B1
 $\frac{1}{2} (3x - 1) \cos 2x \, dx = \frac{1}{2} (3x - 1) \sin 2x - \int \frac{1}{2} \sin 2x \times 3dx$ M1
 $\int (3x - 1) \cos 2x \, dx = \frac{1}{2} (3x - 1) \sin 2x + \frac{3}{2} \cos 2x + c$ (c.a.o.) A1
(b) $\int \frac{x}{(2x + 1)^3} dx = \int \frac{f(u)}{u^3} \times kdu$
 $\int ((2x + 1)^3 dx = \int \frac{f(u)}{u^3} \times kdu$
 $(f(u) = pu + q, p \neq 0, q \neq 0$ and $k = \frac{1}{2}$ or 2) M1

$$\int \frac{x}{(2x+1)^3} dx = \int \frac{(u-1)}{\sqrt{2}} \times \frac{1}{u^3} \times \frac{du}{2}$$
A1

$$\int (au^{-2} + bu^{-3}) du = \frac{au^{-1}}{-1} + \frac{bu^{-2}}{-2} \qquad (a \neq 0, b \neq 0) \qquad B1$$

Either: Correctly inserting limits of 1, 3 in candidate's $cu^{-1} + du^{-2}$ $(c \neq 0, d \neq 0)$ or: Correctly inserting limits of 0, 1 in candidate's $c(2x+1)^{-1} + d(2x+1)^{-2}$ $(c \neq 0, d \neq 0)$ m1

$$\int_{0}^{1} \frac{x}{(2x+1)^{3}} dx = \frac{1}{18}$$
 (= 0.055...) (c.a.o.) A1

Note: Answer only with no working earns 0 marks

© WJEC CBAC Ltd.

6.

8. (a)
$$\frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{A}$$
 B1

(b)
$$\int \frac{\mathrm{d}A}{\sqrt{A}} = \int k \,\mathrm{d}t$$
 M1

$$\frac{A^{1/2}}{\frac{1}{2}} = kt + c$$
 A1

Substituting 64 for A and 3 for t and 196 for A and 5.5 for t in candidate's derived equation m1 16 = 3k + c, 28 = 5.5k + c (both equations) (c.a.o.) A1 Attempting to solve candidate's derived simultaneous linear equations in k and c m1 $A = (2.4t + 0.8)^2$ (o.e.) (c.a.o.) A1

9. (a)
$$AB = 8i - 4j + 12k$$
 B1
(b) $OC = -i + 3j - 7k + \frac{3}{4}(8i - 4j + 12k)$ (o.e.) M1
 $OC = 5i + 2k$ A1
(c) (i) Use of $OA + \mu(-4i + j + 3k)$ on r.h.s. M1
 $r = -i + 3j - 7k + \mu(-4i + j + 3k)$ (all correct) A1
(ii) $-1 + \lambda \times (-4) = 7$
(an equation in λ from one set of coefficients) M1
 $\lambda = -2$ A1
 $1 + (-2) \times 1 = -1$
 $11 + (-2) \times 3 = 5$ (both verifications) A1
An attempt to evaluate $AB.(-4i + j + 3k)$ M1
 $AB.(-4i + j + 3k) = 0$ (convincing) A1
 B lies on L , AB is perpendicular to L and thus B is the foot of the perpendicular from A to L (c.a.o.) A1

10. Assume that there is a real value of x such that

$$(5x-3)^2 + 1 < (3x-1)^2$$
.
 $25x^2 - 30x + 9 + 1 < 9x^2 - 6x + 1 \Rightarrow 16x^2 - 24x + 9 < 0$
 $(4x-3)^2 < 0$
This contradicts the fact that x is real and thus $(5x-3)^2 + 1 \ge (3x-1)^2$.
B1

Ques	Solution	Mark	Notes
1	$S_n = \sum_{r=1}^n (2r-1)^2 = \sum_{r=1}^n 4r^2 - \sum_{r=1}^n 4r + \sum_{r=1}^n 1$	M1A1	M1A0 for 2 correct terms
	$=\frac{4n(n+1)(2n+1)}{6}-\frac{4n(n+1)}{2}+n$	A1A1	Award A1 for 2 correct
	$= \frac{n}{6} \left(8n^2 + 12n + 4 - 12n - 12 + 6 \right)$	A1	FT line above if at least 2 terms present
	$=\frac{4n^3}{3}-\frac{n}{3}$ cao	A1	Penalise 1 mark if <i>n</i> used as dummy variable in summations
2(a)	FITHER $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$		
	$w = \frac{1 - i}{1 + 2i} + \frac{1 + 2i}{2i} = \frac{1 + 2i + 1 - i}{(1 - i)(1 + 2i)}$	M1A1	
	$= \frac{2+i}{3+i}$	A1	
	$w = \frac{3+i}{2+i} \times \frac{2-i}{2-i}$	M1	
	$=\frac{7-i}{5}$	A1A1	1 each for num and denom
	OR $\frac{1}{1-i} = \frac{1+i}{1-i^2} = \frac{1+i}{2}$	M1A1	
	1 - 1 - 2i - 1 - 2i	A1	
	$\frac{1}{1+2i} - \frac{1}{1-4i^2} - \frac{1}{5}$ $\frac{1}{w} = \frac{5+5i+2-4i}{10} = \frac{7+i}{10}$	A1	
	$w = \frac{10}{7+i} \times \frac{7-i}{7-i}$	M1	
(b)	$=\frac{7-i}{5}$	A1	1 each for num and denom
	$M_{od}(w) = \sqrt{50}$ ($\sqrt{2}$)	B1	FT on their w
	$\operatorname{Arg}(w) = -0.142 (-8.13^{\circ})$	B1	Accept 351.9° or 6.14 Do not FT arg if in 1 st quadrant

3 (a)	$\alpha + \beta + \gamma = 2, \beta \gamma + \gamma \alpha + \alpha \beta = 2, \alpha \beta \gamma = -1$	B1	
	$\frac{\beta\gamma}{\alpha} + \frac{\gamma\alpha}{\beta} + \frac{\alpha\beta}{\gamma} = \frac{\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2}{\alpha\beta\gamma}$	M1	
	$(\beta\gamma + \gamma\alpha + \alpha\beta)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$	A1	
	$=\langle \gamma - \gamma $		
	$(2)^2 - 2 \times (-1) \times 2$	A1	Convincing
(b)	$=\frac{-1}{-1}=-8$		C
(0)	Consider		
	$\frac{\gamma\alpha}{\beta} \times \frac{\alpha\beta}{\gamma} + \frac{\alpha\beta}{\gamma} \times \frac{\beta\gamma}{\alpha} + \frac{\beta\gamma}{\alpha} \times \frac{\gamma\alpha}{\beta}$	M1	
	$= \alpha^2 + \beta^2 + \gamma^2$	A1	
	$= (\alpha + \beta + \gamma)^{2} - 2(\beta\gamma + \gamma\alpha + \alpha\beta)$	A1	
	$= 4 - 2 \times 2 = 0$	A1	
	Consider		
	$\frac{\beta\gamma}{\alpha} \times \frac{\gamma\alpha}{\beta} \times \frac{\alpha\beta}{\gamma} = \alpha\beta\gamma = -1$	M1A1	
	The required equation is	P1	FT their coefficients
	$x^3 + 8x^2 + 1 = 0$	DI	i i then elements

4(a)	Rotation matrix = $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Ref matrix in $y = x = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$		
(b)	Fixed points satisfy $\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	M1	
		A1	
	x = x + 1, $(y = -y + 2)These equations are not consistent so there are no fixed points.$	A1	Accept equivalent reason
5	Putting $n = 1$, the formula gives 6 which is divisible by 6 so the result is true for $n = 1$ Assume formula is true for $n = k$, ie	B1	
	7^{k} – 1 is divisible by 6 or $7^{k} = 6N + 1$	M1	
	$7^{k+1} - 1 = 7 \cdot 7^k - 1$	M1	
	= 7(6N+1)-1	A1	
	= 42N + 6	AI	
	This is divisible by 6 therefore true for $n = k \Longrightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	A1	

6(a)(i)	$Det(\mathbf{A}) = 7 - 4\lambda + \lambda(5\lambda - 14) + 3(8 - 5)$	M1	
(ji)	$= 5\lambda^{2} - 18\lambda + 16$ Putting $\lambda = 2$ det $-20 - 36 + 16 - 0$	Al B1	
(11)	So A is singular.	DI	
	Putting det(\mathbf{A}) = 0, product of roots is 16/5		
	So the other root is $8/5$	B1	
(b)(i)	x + 2y + 3z = 2		
	2x + y + 2z = 1		
	5x + 4y + 7z = 4		
	Attempting to use row operations,	M1	
	x + 2y + 3z = 2	A 1	
	5y + 4z = 5 6y + 8z = 6		
	Since the 3^{rd} equation is twice the 2^{rd}	AI	
	equation, it follows that the equations are		Or because the next step gives a
	consistent.	A1	row of zeroes
(ii)	Let $z = \alpha$	M1	
	$y = 1 - \frac{4}{\alpha}$	A1	
	$y = 1$ 3^{α}		
	$r = -\frac{1}{2}\alpha$	A1	
	3^{α}		
	(or equivalent)		
() (•)	1 1 3		
(c)(i)	$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$		
	5 4 7		
	5 -9 5	M1A1	Award M1 if at least 5 correct
	Cofactor matrix = $5 - 8 1$ si		elements
	$\begin{bmatrix} 3 & 5 & -2 \end{bmatrix}$		
	Adjugate matrix $= -9 - 8 - 5$	A1	No FT from incorrect cofactor
			matrix
		D1	
(11)	Determinant = 3	D1	
	$\begin{vmatrix} 3 & 5 & -2 \end{vmatrix}$	B1	ET from incorrect adjugate
	Inverse matrix $=\frac{1}{2} - 9 - 8 = 5$	DI	I I nom meoneet aujugate
	3 3 1 - 1		
(iii)	$\begin{bmatrix} r \end{bmatrix} \begin{bmatrix} 3 & 5 & -2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$		
		M1	FT from inverse matrix
	$\begin{vmatrix} y \\ -3 \end{vmatrix} = -388 - 5 \begin{vmatrix} 1 \\ -9 \end{vmatrix} = -1 + 1 + 1$		
	$ \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} $		
		Λ1	
		AI	

	$= \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$		
7	Taking logs, $\ln f(x) = \ln \sqrt{1 + \sin x} - \ln(1 + \tan x)^2$ $= \frac{1}{2} \ln(1 + \sin x) - 2 \ln(1 + \tan x)$ Differentiating, $\frac{f'(x)}{f(x)} = \frac{\cos x}{2(1 + \sin x)} - \frac{2 \sec^2 x}{(1 + \tan x)}$ Putting $x = \pi/4$, $f'(\pi/4) = -0.586 \text{ cao}$	M1A1 A1 B3 M1 A2	B1 for each correct term
8(a) (b)	$u + iv = (x + iy)^{2}$ $= x^{2} - y^{2} + 2ixy$ Equating real and imaginary parts, $u = x^{2} - y^{2}$ $v = 2xy$ Substituting for y, $u = x^{2} - (2x^{2} + 1) = -1 - x^{2}$ $v^{2} = 4x^{2}(2x^{2} + 1)$ Eliminating x, $x^{2} = -(u + 1)$ So that $v^{2} = 4(u + 1)(2u + 1) \text{ cao}$	M1 A1 M1 A1 M1 A1 A1 M1 A1	FT their expressions from (a)

Ques	Solution	Mark	Notes
1	$u = x^2 \Longrightarrow \mathrm{d}u = 2x\mathrm{d}x,$	B1	
	$[1,2] \rightarrow [1,4]$	B1	
	$I = \frac{1}{2} \int_{1}^{4} \frac{\mathrm{d}u}{\sqrt{25 - u^2}}$	M1	
	$=\frac{1}{2}\left[\sin^{-1}\left(\frac{u}{5}\right)\right]_{1}^{4}$	A1	
	= 0.363 cao	A1	
2(a)	Substituting $t = \tan(\theta/2)$ $\frac{2t}{1+t^2} + \frac{3(1-t^2)}{1+t^2} = 2$ $2t + 3 - 3t^2 = 2 + 2t^2$	M1A1	
	$5t^2 - 2t - 1 = 0$	A1	Convincing.
(h)	$t = \frac{2 \pm \sqrt{24}}{10} = 0.68989, -0.28989$	M1A1	
(0)	$t = 0.68989$ giving $\theta/2 = 0.6039$	B 1	FT their roots from (a)
	The general solution is $\theta = 1.21 + 2n\pi$	B1	Λ ccent 2 859
	$t = -0.28989$ giving $\theta/2 = -0.2821$	BI B1	Accept 5.72 + $2n\pi$
	The general solution is $\theta = -0.564 + 2n\pi$	DI	11000pt 5.12 + 2111

3 (a)	$-1 = \cos \pi + i \sin \pi$		B1	
	$\sqrt[4]{-1} = \cos \pi/4 + i \sin \pi/4 = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$			
	Root2 = cos $3\pi/4$ + i sin $3\pi/4$ = $-\frac{1}{\sqrt{2}}$ + i $\frac{1}{\sqrt{2}}$			
	$Root3 = \cos 5\pi/4 + isi$	$n 5\pi/4 = -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$	A1	Special case : Award 2/6 if they misread –1 as 1.
	Root4 = $\cos 7\pi/4 + is$	$\sin 7\pi/4 = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$	A1	
	×	×		
(b)(i)			B1	FT their roots if possible
	×	×		
(••)				
(11)	Length of side = $\frac{2}{\sqrt{2}}$		B1	
	$\sqrt{2}$ Area of square = 2		B1	

4 (a)	$f'(x) = \frac{2(x-1) - (2x+3)}{(x-1)^2}$	M1	
	(x-1)	A 1	
	$-\frac{1}{(x-1)^2}$	AI	
	This is negative for all $x > 1$ therefore f is strictly decreasing.	A1	
(b)(i)	$f(\Lambda) = \frac{11}{3} f(5) = \frac{13}{4}$		
	f(S) = [13/4, 11/3]	MI A1	A0 if wrong way around but
(ii)	EITHER	N/1 A 1	penanse onry once.
	$y = \frac{2x+3}{x-1} \Longrightarrow x = \frac{y+3}{y-2}$	MIAI	
	$f^{-1}(4) = 7/2, f^{-1}(5) = 8/3$	Al	
	$f^{-1}(S) = [8/3, 7/2]$	A1	A0 if wrong way around.
	$\frac{OR}{2x+3}$ 7		
	$\frac{2x+y}{x-1} = 4 \rightarrow x = \frac{1}{2}$	M1A1	M1A1 for the first and then A1 for the second.
	$\frac{2x+3}{1} = 5 \rightarrow x = \frac{8}{2}$	A1	
	x-1 3 $f^{-1}(S) = [8/3,7/2]$	A1	A0 if wrong way around.
	J (B) [0/0,772]		
5(a)(i)	Completing the square, $(-2)^2 + 2(-1)^2 = 4$	N#1 A 1	
	$(x-2)^{2} + 2(y+1)^{2} = 4$ The centre is therefore (2, -1)	A1	
(ii)	In standard form, the equation is		
	$\frac{(x-2)^2}{4} + \frac{(y+1)^2}{2} = 1$ so $a = 2, b = \sqrt{2}$ si	B1	FT their equation in (ii), (iii) and
	$\frac{4}{\sqrt{4-2}}$ 1	M1A1	(iv)
	$e = \sqrt{-4} = \frac{\sqrt{2}}{\sqrt{2}}$		
(iii)	The foci are $(2+\sqrt{2},-1)$ and $(2-\sqrt{2},-1)$	B1B1	
(iv)	The equations of the directrices are $x = 2 \pm 2\sqrt{2}$	B 1	
(b)(i)	EITHER	M1	
	Putting $x = 0$, $(y+1)^2 = 0$ This has a repeated root, hence $x = 0$ is a tangent	A1	
	OR $repeated root, hence x = 0 is a tangent$		
	Semi-major axis = $2 = x$ -coordinate of centre This equality shows that $x = 0$ is a tangent	M1 A1	
(ii)	Substituting $y = mx$,	M1	
	$x^{2}(1+2m^{2}) - x(4-4m) + 2 = 0$	A1	
1		l	
	Use of the condition for tangency, ie $b^2 = 4ac'$		
	Use of the condition for tangency, ie $b^2 = 4ac'$ $16(1-m)^2 = 8(1+2m^2)$	M1 A1	

7(a)	Consider		
	$f(-x) = \frac{(2(-x)^2 + 1)^2}{(2(-x)^2 + 1)^2} = -f(x)$	M1A1	
	$f(x) = (-x)^3 = f(x)$	A1	
	Therefore f is odd		
(b)	EITHER		
	Differentiating,		
	$f'(x) = 2(2x^2+1).4x.x^3 - 3x^2(2x^2+1)^2$	20141	
	$f(x) = \frac{x^6}{x^6}$	MIAI	
	At a stationary point, putting $f'(x) = 0$,		Condone the cancellation of $r^2(2r^2 + 1)$
	$8x^2 = 3(2x^2 + 1)$	m1	x(2x + 1)
	$r = \pm \sqrt{3}$		
	$x - \pm \sqrt{\frac{2}{2}}$	A1	
	OR		
	Consider $f(x) = 4x + \frac{4}{3} + \frac{1}{3}$	M1	
	$\begin{array}{ccc} x & x^{-} \\ 4 & 3 \end{array}$		
	$f'(x) = 4 - \frac{4}{r^2} - \frac{3}{r^4}$	AI	
	At a stationary point, putting $f'(x) = 0$,		
	$4x^4 - 4x^2 - 3 = 0$	m1	
	. 3		
	$x = \pm \sqrt{\frac{2}{2}}$	A1	
(c)			
	The asymptotes are	B1	
	x = 0 y = 4x	B1	
	$y - \tau \lambda$		
(a)			
		G1	
	×		
		~ (
		G1	

8	EITHER		
	Consider		
	$\cos 5\theta + i\sin 5\theta = (\cos \theta + i\sin \theta)^5$	M1	
	Expanding and taking real parts,		
	$\cos 5\theta = \cos^5 \theta + 10\cos^3 \theta (i\sin\theta)^2$	m1A1	
	$+5\cos\theta(i\sin\theta)^4$		
	$=\cos^{5}\theta - 10\cos^{3}\theta(1 - \cos^{2}\theta) + 5\cos\theta(1 - \cos^{2}\theta)^{2}$	A1	
	$=\cos^5\theta-10\cos^3\theta+10\cos^5\theta+5\cos\theta$	A1	
	$-10\cos^3\theta + 5\cos^5\theta$	A 1	
	$= 16\cos^{5}\theta - 20\cos^{5}\theta + 5\cos\theta$	AI	
	OR		
	Let $z = \cos \theta + i \sin \theta$	M1	
	So that $z + \frac{1}{z} = 2\cos\theta$ and $z^n + \frac{1}{z^n} = 2\cos n\theta$	A1	
	Consider		
	$\left(z+\frac{1}{z}\right)^5 = z^5 + 5z^3 + 10z + \frac{10}{z} + \frac{5}{z^3} + \frac{1}{z^5}$	A1	
		Δ1	
	$32\cos^{3}\theta = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$	A1	
	$\cos 5\theta = 16\cos^5 \theta - 5\cos 3\theta - 10\cos \theta$	A 1	
	$= 16\cos^5\theta - 5(4\cos^3\theta - 3\cos\theta) - 10\cos\theta$	AI A1	
	$= 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	AI	

Ques	Solution	Mark	Notes
1	Using $\cosh 2x = 2\cosh^2 x - 1$, the eqn becomes	M1	
	$2\cosh^2 x - 7\cosh x + 6 = 0$	A1	
	Solving the quadratic equation,	M1	
	$\cosh x = 2, 1.5$	Al	
	The positive roots are therefore		
	$x = \cosh^{-1} 2 = 1.32$	A1	FT their roots
	and $x = \cosh^{-1}(1.5) = 0.96$	A1	
2(a)(i)	The Newton Donkson iteration is		
2(a)(1)	The Newton-Raphson iteration is		
	$x_{n+1} = x_n - \frac{(x_n^{\circ} - a)}{2}$	M1	
	$3x_n^2$		
	$2x_n^3 + a$	Δ1	Convincing
	$-\overline{3x_n^2}$	AI	
	'n		
(ii)	$x_0 = 2$		
	$x_1 = 2.1666666667$	M1A1	
	$x_2 = 2.154503616$		
	$x_3 = 2.154434692$		
	$x_4 = 2.15443469$		
	$\sqrt[3]{10} = 2.1544$ correct to 4 decimal places.	A1	
(b)			
	Consider		
	$\frac{d}{d}\left(\frac{a}{d}\right) = -\frac{2a}{d}$	M1A1	M0 if <i>a</i> =10
	$dx(x^2) = x^3$. 1	
	$= -2$ when $x = \sqrt[3]{a}$	AI	
	The sequence diverges because this exceeds 1 in	A1	
2(2)	modulus.		
3(a)	$f'(x) = \frac{2e^x}{2e^x}$	B1	
	$2e^{x}-1$	DI	
	$f''(x) = \frac{2e^{x}(2e^{x}-1) - 2e^{x} \cdot 2e^{x}}{2e^{x}}$	M1	
	$(2e^x - 1)^2$		
	$-\frac{-2e^x}{x}$	A1	convincing
(b)	$(2e^{x}-1)^{2}$	111	convincing
(0)	$f'''(x) = -2e^{x}(2e^{x}-1)^{2} + 2e^{x}\cdot 2e^{x}\cdot 2(2e^{x}-1)$	M1A1	
	$\int (x) = \frac{(2e^x - 1)^4}{(2e^x - 1)^4}$	DA	
	f(0) = 0, f'(0) = 2, f''(0) = -2, f'''(0) = 6	B 2	Award B1 for 2 correct values
	The Maclaurin series is	7444	ET on their values of $f^{(n)}(0)$
	$2x - x^2 + x^3 + \dots$	MIAI	1 1 on men values of $f^{(0)}$

4	Completing the square,		
	$3 + 2x - x^2 = 4 - (x - 1)^2$	M1A1	
	so $I = \int_{-1}^{2} \sqrt{4 - (x - 1)^2} dx$		
	$\operatorname{Put}^{1} x - 1 = 2\sin\theta$	M1	Allow $x - 1 = 2\cos\theta$
	$dx = 2\cos\theta d\theta, [1,2] \rightarrow [0,\pi/6]$	AIAI	
	$I = \int_{0}^{\pi} \sqrt{4 - 4\sin^2\theta} .2\cos\theta \mathrm{d}\theta$	m1	
	$=4\int_{0}^{\pi/6}\cos^2\theta\mathrm{d}\theta$	A1	
	$= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) \mathrm{d}\theta$	A1	
	$=2\left[\theta+\frac{\sin 2\theta}{2}\right]^{\pi/6}$	A1	
		A1	
5(a)	$I_{n} = \left[x^{n} \cosh x\right]_{0}^{1} - n \int_{0}^{1} x^{n-1} \cosh x dx$	M1A1	
	$= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$	A1	
	$= \cosh 1 - \left[nx^{n-1} \sinh x \right]_{0}^{1} + n(n-1)I_{n-2}$	M1A1	
(b)	$= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$		
	$I_0 = \int_0^1 \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1$	M1A1	M1A1 for evaluating I_0 at any
	$\int_{0}^{0} L = \cosh 1 - 4 \sinh 1 + 12 L$	M1	stage
	$= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0)$	A1	FT their I_0 if substituted here
	$= 13\cosh 1 - 28\sinh 1 + 24(\cosh 1 - 1)$ = 37\cosh1 - 28\sinh1 - 24 \cosh	A1	

6(a)	Consider		
0(4)	$x = r\cos\theta$	M1	
	$=\sin^2\theta\cos\theta$	A1	
	$\frac{\mathrm{d}x}{\mathrm{d}x} = 2\sin\theta\cos^2\theta - \sin^3\theta$	MIAI	
	$\mathrm{d} heta$	WIIAI	
	The tangent is perpendicular to the initial line		
	dx dx dx dx dx dx dx dx		
	where $\frac{d\theta}{d\theta} = 2\sin\theta\cos^2\theta - \sin^2\theta = 0$	MI	Do not penalise the removal of the factor $\sin \theta$
	$\tan^2 \theta = 2$	A1	
	$\theta = \tan^{-1}\sqrt{2} = 0.955$	A1	
	r = 0.667	AI	
(b)			
(0)	Area = $\frac{1}{2}\int r^2 d\theta$	M1	
	$\frac{2}{\pi/2}$		
	$=\frac{1}{2}\int (1-\sin\theta)^2 d\theta$	A1	
	$=\frac{1}{2}\int_{0}^{\pi/2}(1-2\sin\theta+\sin^{2}\theta)d\theta$	A1	
	$=\frac{1}{2}\int_{0}^{\pi/2}(3-4\sin\theta-\cos2\theta)d\theta$	A1	
	$4 \frac{J}{0}$		
	$-\frac{1}{3\theta} + 4\cos\theta - \frac{1}{3}\sin2\theta$	A1	
	$4 \begin{bmatrix} 30 + 10030 & 2 \end{bmatrix}_{0}$		
	$=\frac{3\pi-8}{1000000000000000000000000000000000000$	A1	
	8		

7(a)(i)	$D(\operatorname{cosech} x) = D\left(\frac{1}{\sinh x}\right)$	M1	
	$=\frac{-1}{\sinh^2 x} \times \cosh x$	A1	
	$= -\operatorname{cosech}x\operatorname{coth}x$		
	$D(\coth x) = D\left(\frac{\cosh x}{\sinh x}\right)$	M1	
	$= \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x}$	A1	
(**)	$= -\operatorname{cosech}^2 x$		
(11)	$D\ln(\operatorname{cosech} x + \operatorname{coth} x)$		
	$= \frac{-(\operatorname{cosech} x \operatorname{coth} x + \operatorname{cosech}^2 x)}{x}$	M1	
	- (cosech <i>x</i> + coth <i>x</i>)		
	$=-\operatorname{cosech} x$	Π	convincing
(b)(i)			
	$L = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$	M1	
	$=\int_{1}^{e}\sqrt{1+\left(\frac{1}{x}\right)^{2}}\mathrm{d}x$	A1	
(ii)	$= \int_{1}^{e} \frac{\sqrt{1+x^2}}{x} \mathrm{d}x$		
	Putting $x = \sinh u$, $dx = \cosh u du$, [1,e] $\rightarrow [\sinh^{-1}1, \sinh^{-1}e]$ ([α, β])	B1B1	
	Arc length = $\int_{\alpha}^{\beta} \frac{\sqrt{1 + \sinh^2 u}}{\sinh u} \cdot \cosh u du$	M1	
	$= \int_{\alpha}^{\beta} \frac{\cosh^2 u}{\sinh u} du$	A1	
	$= \int_{\alpha}^{\beta} \frac{1 + \sinh^2 u}{\sinh u} \mathrm{d}u$	A1	
	$= \int_{\alpha}^{\beta} (\operatorname{cosech} u + \sinh u) du$		
(iii)	α	M1A1	
	$= \left[-\ln(\operatorname{cosech} u + \operatorname{coth} u) + \operatorname{cosh} u \right]^{\beta}$	٨2	
	$= \begin{bmatrix} n(\cos \sin \alpha + \cos \alpha \alpha) + \cos \alpha \alpha \end{bmatrix}_{\alpha}$ $= 2.00$	AL	
	- 2.00		

GCE MATHS C1-C4 AND FP1-FP3 MS SUMMER 2013

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>